The Impact of Hydrothermal Carbonization Treatment on Anaerobic Digestion of Organic Fraction of Municipal Solid Waste

Document Type : Research Article


1 School of Environment, College of Engineering, University of Tehran, Tehran, Iran

2 Faculty of Agricultural Engineering & Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran


A significant portion of the produced Municipal Solid Waste (MSW) is organic materials, especially in developing countries. Most MSW management problems are pertinent to the Organic Fraction of the Municipal Solid Waste (OFMSW). In this experimental investigation, the impact of the hydrochar produced by Hydrothermal Carbonization (HTC) at different temperatures on Anaerobic Digestion (AD) of Tehran's OFMSW has been investigated. The parameters including the amount of Volatile Matter (VM), Fixed Carbon (FC), ash content, hydrochar yield, heating value, and energy yield, elemental analysis, proximate analysis, and biomethane production results were employed to examine how and why hydrochars are effective. The impact of the hydrochars produced at 150, 190, and 230°C on AD was analyzed for the OFMSW. In the hydrothermal carbonization process, the hydrochar yield declined as temperature increased while the energy yield in hydrochar-190 reached its maximum thanks to increased heating value. The impact of hydrochar on biomethane production content varied. In the hydrochars produced at 150 and 190 °C, biomethane production was increased 35.88% and 47.33%, respectively, which was due to the destruction of the hard structure of the OFMSW. However, due to the production of the inhibitors, such as phenol and furfural, in the HTC process, the biomethane production of hydrochar-230 declined by 29%. The effect of the hydrothermal carbonization on AD under the optimum condition included an increase in biomethane production and a reduction in the retention time in biomethane production.


Abudi, Z. N., Hu, Z., Sun, N., Xiao, B., Rajaa, N., Liu, C., & Guo, D. (2016). Batch anaerobic co-digestion of OFMSW (organic fraction of municipal solid waste), TWAS (thickened waste activated sludge) and RS (rice straw): influence of TWAS and RS pretreatment and mixing ratio. Energy, 107, 131-140.
Aragón-Briceño, C., Ross, A. B., & Camargo-Valero, M. A. (2017). Evaluation and comparison of product yields and bio-methane potential in sewage digestate following hydrothermal treatment. Applied energy, 208, 1357-1369.
ASTM E1621-21. Standard Guide for Elemental Analysis by Wavelength Dispersive X-Ray Fluorescence Spectrometry. (2021). ASTM International, West Conshohocken, PA, Available from:
Babu, R., Veramendi, P. M. P., & Rene, E. R. (2021). Strategies for resource recovery from the organic fraction of municipal solid waste. Case Studies in Chemical and Environmental Engineering, 3, 100098.
Basso, D., Patuzzi, F., Castello, D., Baratieri, M., Rada, E. C., Weiss-Hortala, E., & Fiori, L. (2016). Agro-industrial waste to solid biofuel through hydrothermal carbonization. Waste management, 47, 114-121.
Basso, D., Weiss-Hortala, E., Patuzzi, F., Castello, D., Baratieri, M., & Fiori, L. (2015). Hydrothermal carbonization of off-specification compost: A byproduct of the organic municipal solid waste treatment. Bioresource technology, 182, 217-224.
Benavente, V., Calabuig, E., & Fullana, A. (2015). Upgrading of moist agro-industrial wastes by hydrothermal carbonization. Journal of Analytical and Applied Pyrolysis, 113, 89-98.
Bolzonella, D., Pavan, P., Mace, S., & Cecchi, F. (2006). Dry anaerobic digestion of differently sorted organic municipal solid waste: a full-scale experience. Water Science and Technology, 53(8), 23-32.
Cesaro, A., & Belgiorno, V. (2014). Pretreatment methods to improve anaerobic biodegradability of organic municipal solid waste fractions. Chemical Engineering Journal, 240, 24-37.
Cesaro, A., Belgiorno, V., Siciliano, A., & Guida, M. (2019). The sustainable recovery of the organic fraction of municipal solid waste by integrated ozonation and anaerobic digestion. Resources, Conservation and Recycling, 141, 390-397.
Choe, U., Mustafa, A. M., Lin, H., Xu, J., & Sheng, K. (2019). Effect of bamboo hydrochar on anaerobic digestion of fish processing waste for biogas production. Bioresource technology, 283, 340-349.
Choe, U., Mustafa, A. M., Zhang, X., Sheng, K., Zhou, X., & Wang, K. (2021). Effects of hydrothermal pretreatment and bamboo hydrochar addition on anaerobic digestion of tofu residue for biogas production. Bioresource Technology, 336, 125279.
Coronella, CJ., Lynam, JG., Reza, MT., & Uddin, MH. (2014). Hydrothermal carbonization of lignocellulosic biomass. In Application of hydrothermal reactions to biomass conversion. Berlin, Heidelberg, Springer.
Dasgupta, A., & Chandel, M. K. (2019). Enhancement of biogas production from organic fraction of municipal solid waste using hydrothermal pretreatment. Bioresource Technology Reports, 7, 100281.
Maleki Delarestaghi, R., Ghasemzadeh, R., Mirani, M., & Yaghoubzadeh, P. (2018). The comparison between different waste management methods of Tabas city with life cycle assessment assessment. Journal of Environmental Science Studies, 3(3), 782-793.
Ebrahimian, F., Karimi, K., & Kumar, R. (2020). Sustainable biofuels and bioplastic production from the organic fraction of municipal solid waste. Waste Management, 116, 40-48.
Federation, W. E., & APH Association. (2005). Standard methods for the examination of water and wastewater. American Public Health Association (APHA): Washington, DC, USA.
Ferrari, F., Striani, R., Minosi, S., De Fazio, R., Visconti, P., Patrono, L., Catarinucci, L., Corcione, C.E. and Greco, A. (2020). An innovative IoT-oriented prototype platform for the management and valorisation of the organic fraction of municipal solid waste. Journal of Cleaner Production, 247, p.119618.
Hansen, T. L., Schmidt, J. E., Angelidaki, I., Marca, E., la Cour Jansen, J., Mosbæk, H., & Christensen, T. H. (2004). Method for determination of methane potentials of solid organic waste. Waste management, 24(4), 393-400.
He, C., Chen, C. L., Giannis, A., Yang, Y., & Wang, J. Y. (2014). Hydrothermal gasification of sewage sludge and model compounds for renewable hydrogen production: a review. Renewable and Sustainable Energy Reviews, 39, 1127-1142.
Heidary, R. (2017). Effect of temperature on hydrothermal gasification of paper mill waste, case study: the paper mill in North of Iran. Journal of Environmental Studies, 43(1), 59-71.
Jain, A., Balasubramanian, R., & Srinivasan, M. P. (2016). Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chemical Engineering Journal, 283, 789-805.
Libra, J.A., Ro, K.S., Kammann, C., Funke, A., Berge, N.D., Neubauer, Y., Titirici, M.M., Fühner, C., Bens, O., Kern, J. and Emmerich, K.H. (2011). Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2(1), pp.71-106.
Liu, J., Zhao, M., Lv, C., & Yue, P. (2020). The effect of microwave pretreatment on anaerobic co-digestion of sludge and food waste: Performance, kinetics and energy recovery. Environmental Research, 189, 109856.
Liu, Y., Ni, Z., Kong, X., & Liu, J. (2017). Greenhouse gas emissions from municipal solid waste with a high organic fraction under different management scenarios. Journal of cleaner production, 147, 451-457.
Mäkelä, M., Benavente, V., & Fullana, A. (2015). Hydrothermal carbonization of lignocellulosic biomass: Effect of process conditions on hydrochar properties. Applied Energy, 155, 576-584.
Pazoki, M., & Ghasemzadeh, R. (2020). Municipal Landfill Leachate Management. Springer International Publishing.
Pham, T. P. T., Kaushik, R., Parshetti, G. K., Mahmood, R., & Balasubramanian, R. (2015). "Food waste-to-energy conversion technologies: Current status and future directions". Waste management, 38, 399-408.
Phuttaro, C., Sawatdeenarunat, C., Surendra, K. C., Boonsawang, P., Chaiprapat, S., & Khanal, S. K. (2019). Anaerobic digestion of hydrothermally-pretreated lignocellulosic biomass: Influence of pretreatment temperatures, inhibitors and soluble organics on methane yield. Bioresource technology, 284, 128-138.
Rani, R. U., Kumar, S. A., Kaliappan, S., Yeom, I. T., & Banu, J. R. (2012). Low temperature thermo-chemical pretreatment of dairy waste activated sludge for anaerobic digestion process. Bioresource technology, 103(1), 415-424.
Tyagi, V. K., Fdez-Güelfo, L. A., Zhou, Y., Álvarez-Gallego, C. J., Garcia, L. R., & Ng, W. J. (2018). "Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): Progress and challenges". Renewable and Sustainable Energy Reviews, 93, 380-399.
Vergara, S. E., & Tchobanoglous, G. (2012). Municipal solid waste and the environment: a global perspective. Annual Review of Environment and Resources, 37, 277-309.
Volpe, M., & Fiori, L. (2017). From olive waste to solid biofuel through hydrothermal carbonisation: The role of temperature and solid load on secondary char formation and hydrochar energy properties. Journal of Analytical and Applied Pyrolysis, 124, 63-72.
Volpe, M., Goldfarb, J. L., & Fiori, L. (2018). Hydrothermal carbonization of Opuntia ficus-indica cladodes: Role of process parameters on hydrochar properties. Bioresource Technology, 247, 310-318.
Wilson, D.C., Rodic, L., Modak, P., Soos, R., Carpintero, A., Velis, K., Iyer, M. and Simonett, O. (2015).
Yu, Q., Liu, R., Li, K., & Ma, R. (2019). A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China. Renewable and Sustainable Energy Reviews, 107, 51-58.
Xu, J., Mustafa, A. M., Lin, H., Choe, U. Y., & Sheng, K. (2018). Effect of hydrochar on anaerobic digestion of dead pig carcass after hydrothermal pretreatment. Waste Management, 78, 849-856.
Zamri, M.F.M.A., Hasmady, S., Akhiar, A., Ideris, F., Shamsuddin, A.H., Mofijur, M., Fattah, I.R. and Mahlia, T.M.I. (2021). A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste. Renewable and Sustainable Energy Reviews, 137, p.110637.
Zeynali, R., Khojastehpour, M., & Ebrahimi-Nik, M. (2017). Effect of ultrasonic pre-treatment on biogas yield and specific energy in anaerobic digestion of fruit and vegetable wholesale market wastes. Sustainable Environment Research, 27(6), 259-264.