Optimal-Fair Waste Load Allocation of River System Based on Rawls Theory

Document Type : Research Article

Authors

1 Kish International Campus, University of Tehran, Iran

2 Faculty of Environment, University of Tehran, Tehran, Iran

3 Department of Civil Engineering, University of Isfahan, Isfahan , Iran

Abstract

Global attention has focused on the general deterioration of water quality due to rapid industrialization, population growth and a steady decline in the amount of safe water available. This study provides a new framework for waste load allocation from an fair and equitable perspective. First, the optimal scenarios are generated by calling the (Streeter-Phelps) S-P equation with the Nod-dominated Genetic Algorithm-II (NSGA-II) optimization algorithm. In addition, using two fairness measures from Rawls' theory of justice, two optimization problems specifying have been defined with three objective functions, such as minimizing total treatment costs and violating standards. Then the Complex Proportional Assessment (COPRAS) method has been used to select and compare most waste load allocation scenarios. Results indicated that optimal waste load allocation scenarios based on Rawls justice theory in addition to reduce of the violation rate of the DO could effectively configure a system to allocate treatment cost fairly.

Keywords


Burn, D. H., & Lence, B. J. (1992). Comparison of optimization formulations for waste-load allocations. Journal of Environmental Engineering, 118(4), 597-612.
Burn, D. H., & Yulianti, J. S. (2001). Waste-load allocation using genetic algorithms. Journal of Water Resources Planning and Management, 127(2), 121-129.
de Andrade, L. N., Mauri, G. R., & Mendonça, A. S. F. (2013). General multiobjective model and simulated annealing algorithm for waste-load allocation. Journal of Water Resources Planning and Management, 139(3), 339-344.
Deb, K. (2011). Multi-objective optimisation using evolutionary algorithms: an introduction (pp. 3-34). Springer London.
Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In International Conference on Parallel Problem Solving from Nature (pp. 849-858). Springer, Berlin, Heidelberg.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197.

Feizi Ashtiani, E., Niksokhan, M. H., & Jamshidi S. (2015). Equitable fund allocation, an economical approach for sustainable waste load allocation. Environmental Monitoring and Assessment, 187, 522.

Golfam, P., & Ashofteh, P. S. (2019). Development of the grey approach in water resources management using risk indexes. Iran-Water Resources Research, 15(3), 120-132.
Hojjati, A., Monadi, M., Faridhosseini, A., & Mohammadi, M. (2018). Application and comparison of NSGA-II and MOPSO in multi-objective optimization of water resources systems. Journal of Hydrology and Hydromechanics, 66(3), 323-329.

Imani S., Niksokhan M.H., Delavar M., & Safari Shali R. (2023). Water allocation sustainability assessment in climate change: a modeling approach using water footprint and just policy, Journal of Water and Climate Change, 14 (11), 4261–4272.

Jamshidi S. & Niksokhan M.H. (2016). Multiple pollutant discharge permit markets, a challenge for wastewater treatment plants, Journal of Environmental Planning and Management 59(8), 1438-1455.

Loucks, D. P., Kindler, J., & Fedra, K. (1985). Interactive water resources modeling and model use: an overview. Water Resources Research 21:95–102
Mahjouri, N., & Bizhani-Manzar, M. (2013). Waste load allocation in rivers using Fallback bargaining. Water Resour Manag 27(7): 2125–2136
Mostafavi, S. A., & Afshar, A. (2011). Waste load allocation using non-dominated archiving multi-colony ant algorithm. Procedia Computer Science, 3, 64-69.
Murty, Y.S.R., Bhallamudi, S.M., & Srinivasan, K. (2006). Non-uniform flow effect on optimal waste load allocation in rivers. Water resources management, 20, 509-530.
Niksokhan, M. H., Kerachian, R., & Karamouz, M. (2009). A game theoretic approach for trading discharge permits in rivers. Water Science and Technology, 60(3), 793-804.
Park, N. (2010). Hydrological Science (HS) (Vol. 17). World Scientific.
Qin, X., Huang, G., Chen, B., & Zhang, B. (2009). An Interval-Parameter Waste-Load-Allocation Model for River Water Quality Management Under Uncertainty, Environmental Management 43, 999-1012.
Rani, D. & Moreira, M.M. (2010). Simulation–optimization modeling: a survey and potential application in reservoir systems operation. Water resources management, 24 (6), 1107-1138.
Rathnayake, U. S., & Tanyimboh, T. T. (2015). Evolutionary multi-objective optimal control of combined sewer overflows. Water Resources Management, 29, 2715-2731.
Rawls, J. (1997). A Theory of Justice, Cambridge: Harvard University Press
Roozbahani, A., Ghased, H., & Shahedany, M. H. (2020). Inter-basin water transfer planning with grey COPRAS and fuzzy COPRAS techniques: A case study in Iranian Central Plateau. Science of the Total Environment, 726, 138499.
Foroughi, S., Hamidi, J.K., Monjezi, M., & Nehring, M. (2019). The integrated optimization of underground stope layout designing and production scheduling incorporating a non-dominated sorting genetic algorithm (NSGA-II), Resources Policy, 63, 1–11.
Tisdell, J. G. (2003). Equity and social justice in water doctrines. Social justice research, 16, 401-416.
Tung YK (1992) Multiple-objective stochastic waste load allocation. Water Resource Management 6(2):117–133.
Weng, Q. (2007). A historical perspective of river basin management in the Pearl River Delta of China. Journal of Environmental Management, 85(4), 1048-1062.
Xu, J., Hou, S., Yao, L., & Li, C. (2017). Integrated waste load allocation for river water pollution control under uncertainty: a case study of Tuojiang River, China. Environmental Science and Pollution Research, 24, 17741-17759.
Xu, J., Lv, C., Zhang, M., Yao, L., & Zeng, Z. (2015). Equilibrium strategy-based optimization method for the coal-water conflict: A perspective from China. Journal of Environmental Management, 160, 312-323.
Yandamuri, S. R., Srinivasan, K., & Murty Bhallamudi, S. (2006). Multiobjective optimal waste load allocation models for rivers using nondominated sorting genetic algorithm-II. Journal of water resources planning and management, 132(3), 133-143.
Zavadskas, E. K., Kaklauskas, A., & Šarka, V. (1994). The new method of multicriteria complex proportional assessment of projects.