Environmental Planning for Wind Power Plant Site Selection using a Fuzzy PROMETHEE-Based Outranking Method in Geographical Information System

Document Type: Research Article

Authors

1 Department of Environment, Lorestan University, Iran

2 Department of Environment, Tehran University, Iran

Abstract

Selection of suitable sites for wind power plants is one of the most important decision on wind resources development. Site selection for the establishment of large wind power plants requires spatial evaluation taking technical, economic, and environmental considerations into account. This study has applied a combination of PROMETHEE and Fuzzy AHP methods in a geographical information system environment to carry out spatial site selection for wind power plants in Lorestan Province of Iran. The fuzzy analytic hierarchy process method is used to determine the weights of the criteria whereas the PROMETHEE method is used to prioritise the alternatives based on the weights obtained from the fuzzy AHP. The integration of GIS and MCDM makes a powerful tool for the selection of the best suitable sites because GIS provides efficient manipulation, analysis and presentation of spatial data while MCDM supplies consistent weight of alternatives and criteria.The results showed that about 7.38 % of the area of Lorestan province is most suitable for wind power plants development. Sensitivity analysis shows that suitable zones coincide with suitable divisions of the input layers. The sensitivity analysis showed satisfactory results for the combination of PROMETHEE and Fuzzy AHP methods in wind power plant site selection.

Keywords


Ahmadipari, M.; Hoveidi, H.; Jafari, H.; Pazoki, M. (2018). An integrated environmental management approach to industrial site selection by genetic algorithm and fuzzy analytic hierarchy process in geographical information system. Global J. Environ. Sci. Manage. 4, 339-350 .

Albadvi, A.; Chaharsooghi, S. K.; Esfahanipour, A. (2007). Decision making in stock trading: An application of PROMETHEE. European Journal of Operational Research, 177, 673-683.

Asakereh, A.; Omid, M.; Alimardani, R.; Sarmadian, F. (2014). Developing a GIS-based fuzzy AHP model for selecting solar energy sites in Shodirwan region in Iran. International Journal of Advanced Science and Technology, 68, 37-48.

Aydin, N. Y.; Kentel, E.; Duzgun, H. S. (2013). GIS-based site selection methodology for hybrid renewable energy systems: A case study from western Turkey. Energy Conversion and Management, 70, 90-106.

Ayodele, T.; Ogunjuyigbe, A.; Odigie, O.; Munda, J. (2018). A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria. Applied Energy, 228, 1853-1869.

Baban, S. M.; Parry, T. (2001). Developing and applying a GIS-assisted approach to locating wind farms in the UK. Renewable energy, 24, 59-71.

Bili, A.;Vagiona, D. G. (2018). Use of multicriteria analysis and GIS for selecting sites for onshore wind farms: the case of Andros Island (Greece). European Journal of Environmental Sciences, 8, 5-13.

Brans, J. (1982). Lingenierie de la decision. Elaborationdinstrumentsdaide a la decision. Methode PROMETHEE. In R. Nadeau & M. Landry (Eds.), Laide a la Decision: Nature, Instrument s et Perspectives Davenir. Presses de Universite Laval,1, 183-214.

Cashmore, M.; Rudolph, D.; Larsen, S. V.; Nielsen, H. (2018). International experiences with opposition to wind energy siting decisions: lessons for environmental and social appraisal. Journal of Environmental Planning and Management, 11, 1-24.

Elevli, B.; Demirci, A. (2004). Multicriteria choice of ore transport system for an underground mine: Application of PROMETHEE methods. Journal-South African Institute of mining and metallurgy, 104, 251-256.

Fetanat, A.; Khorasaninejad, E. (2015). A novel hybrid MCDM approach for offshore wind farm site selection: A case study of Iran. Ocean & Coastal Management, 109, 17-28.

Ghadirian, O.; Hemami, M.; Soffianian, A.; Pourmanaphi, S.; Malekian, M.; Tarkesh, M. (2017). Probabilistic prediction of forest decline in Lorestan province using a combined modeling approach. Iranian Journal of Forest and Range Protection Research, 15, 131-145 .

Ghobadi, M.; Jafari, H. R.; Nabi Bidhendi, G.; Yavari, A. R. (2015). Environmental impact assessment of petrochemical industry using fuzzy rapid impact assessment matrix. Petroleum and environmental biotechnology, 6, 1-7.

Gigović, L.; Pamučar, D.; Božanić, D.; Ljubojević, S. (2017). Application of the GIS-DANP-MABAC multi-criteria model for selecting the location of wind farms: A case study of Vojvodina, Serbia. Renewable Energy., 103, 501-521 .

Gorsevski, P. V.; Cathcart, S. C.; Mirzaei, G.; Jamali, M. M.; Ye, X.; Gomezdelcampo, E. (2013). A group-based spatial decision support system for wind farm site selection in Northwest Ohio. Energy Policy, 55, 374-385.

Govindan, K.; Kadziński, M.; Sivakumar, R. (2017). Application of a novel PROMETHEE-based method for construction of a group compromise ranking to prioritization of green suppliers in food supply chain. Omega., 71, 129-145.

Gul, M.; Guneri, A.; Baskan, M. (2018). An occupational risk assessment approach for construction and operation period of wind turbines. Global J. Environ. Sci. Manage., 4, 281-298 .

Hanine, M.; Boutkhoum, O.; Agouti, T.; Tikniouine, A. (2017). A new integrated methodology using modified Delphi-fuzzy AHP-PROMETHEE for Geospatial Business Intelligence selection. Information Systems and e-Business Management, 15, 897-925.

Hansen, H. S. (2005). GIS-based multi-criteria analysis of wind farm development.  Proceedings of the 10th Scandinavian research conference on geographical information science. Citeseer. 2: 75-78 .

Hatami, E.; Abbaspour, A.; Dorostkar, V.  (2018). Phytoremediation of a petroleum-polluted soil by native plant species in Lorestan Province, Iran. Environmental Science and Pollution Research, 22, 1-8.

Juan, Y.-K.; Roper, K. O.; Castro-Lacouture, D.; Ha Kim, J. (2010). Optimal decision making on urban renewal projects. Management Decision, 48, 207-224.

Latinopoulos, D.;  Kechagia, K. (2015). A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece. Renewable Energy, 78, 550-560.

Mahdy, M.; Bahaj, A. S. (2018). Multi criteria decision analysis for offshore wind energy potential in Egypt. Renewable Energy, 118, 278-289.

Mohammadizadeh, M.; Karbassi, A.; Nabi Bidhendi, G. R.; Abbaspour, M. (2016). Integrated environmental management model of air pollution control by hybrid model of DPSIR and FAHP. Global J. Environ. Sci. Manage., 2, 381-388 .

Nassereddine, M.; Eskandari, H. (2017). An integrated MCDM approach to evaluate public transportation systems in Tehran. Transportation Research Part A: Policy and Practice, 106, 427-439.

Noorollahi, Y.; Yousefi, H.; Mohammadi, M. (2016). Multi-criteria decision support system for wind farm site selection using GIS. Sustainable Energy Technologies and Assessments., 13, 38-50.

Oberschmidt, J.; Geldermann, J.; Ludwig, J.; Schmehl, M. (2010). Modified PROMETHEE approach for assessing energy technologies. International Journal of Energy Sector Management, 4, 183-212.

Ogrodnik, K. (2017). The application of the promethee method in evaluation of sustainable development of the selected cities in Poland. Ekonomia i Środowisko, 3, 19-36 .

Panwar, N.; Kaushik, S.; Kothari, S. (2011). Role of renewable energy sources in environmental protection: a review. Renewable and Sustainable Energy Reviews, 15, 1513-1524 .

Peko, I.; Gjeldum, N.; Bilić, B. (2018). Application of AHP, Fuzzy AHP and PROMETHEE Method in Solving Additive Manufacturing Process Selection Problem. Tehnički vjesnik, 25, 453-461.

Pirdashti, M.; Behzadian, M. (2009). Selection of the best module design for ultrafiltration (UF) membrane in dairy industry: an application of AHP and PROMETHEE. International Journal of Engineering, 3, 426-442.

Rezaee, M. A.; Aidin, P.; Kamran, A.; Hadi, M. M. (2018). The influence of rural road development on forest extent changes over the three time periods: A case study of Chegeni region, Lorestan province. Journal of Forest Science, 64, 313-318.

Sánchez-Lozano, J.; García-Cascales, M.;  Lamata, M. (2016). GIS-based onshore wind farm site selection using Fuzzy Multi-Criteria Decision Making methods. Evaluating the case of Southeastern Spain. Applied energy, 171, 86-102 .

Schallenberg-Rodríguez, J.;  Montesdeoca, N. G. (2018). Spatial planning to estimate the offshore wind energy potential in coastal regions and islands. Practical case: The Canary Islands. Energy, 143, 91-103 .

Sen, D. K.; Datta, S.; Patel, S. K.; Mahapatra, S. S. (2015). Multi-criteria decision making towards selection of industrial robot: exploration of PROMETHEE II method. Benchmarking: An International Journal, 22, 465-487.

Simao, A.; Densham, P. J.; Haklay, M. M. (2009). Web-based GIS for collaborative planning and public participation: An application to the strategic planning of wind farm sites. Journal of environmental management, 90, 2027-2040 .

Solangi, Y. A.; Tan, Q.; Khan, M. W. A.; Mirjat, N. H.; Ahmed, I. (2018). The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application. Energies., 11, 1-26.

Tabaraee, E.; Ebrahimnejad, S.; Bamdad, S. (2017). Evaluation of power plants to prioritise the investment projects using fuzzy PROMETHEE method. International Journal of Sustainable Energy, 12, 1-15.

Talinli, I.; Topuz, E.; Aydin, E.; Kabakc, S. (2011). A holistic approach for wind farm site selection by using FAHP. Wind Farm-Technical Regulations, Potential Estimation and Siting Assessment. InTech, 14, 213-234 .

Van Haaren, R.; Fthenakis, V. (2011). GIS-based wind farm site selection using spatial multi-criteria analysis (SMCA): Evaluating the case for New York State. Renewable and Sustainable Energy Reviews, 15, 3332-3340.

Villacreses, G.; Gaona, G.; Martínez-Gómez, J.; Jijón, D. J. (2017). Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador. Renewable Energy, 109, 275-286.

Vincke, J.; Brans, P. (1985). A preference ranking organization method. The PROMETHEE method for MCDM. Management Science, 31, 647-656.

Watson, J. J.; Hudson, M. D. (2015). Regional Scale wind farm and solar farm suitability assessment using GIS-assisted multi-criteria evaluation. Landscape and Urban Planning, 138,20-31.