Sub and Supercritical Decontamination of Oil-Based Drill Cuttings: A Review

Document Type : Review Article


School of Environment, College of Engineering, University of Tehran, Tehran, Iran


Drill mud is a fluid which is used in oil extraction industries in order to cool and lubricate the drill bit. Due to containing numerous toxic components, it is considered as a hazardous waste which must be treated before discharging to the environment. Current separation techniques for drill cutting treatment can be categorized into three main categories of physical (dewatering), physiochemical (solvent extraction, surfactant enhanced washing, and supercritical CO2 extraction), and thermal methods (desorption and microwave heating). In this research, the effectiveness of superheated steam extraction for drill mud recovery is studied. Super-critical fluid extraction is an innovative process in the field of contaminated soil treatment. Extraction with super-critical fluid is a simple and rapid extraction process which uses supercritical fluids as solvents. In order to enhance the decomposition percentage, supercritical extraction is accompanied by oxidation process using H2O2. Using superheated steam extraction process at 2.3MPa and 225 °C, 78.56% and 83.09% of total organic carbon were removed from the drill mud sample. In the combined system of supercritical extraction and oxidation with H2O2, more than 99.9% of polycyclic hydrocarbons in the drill mud mixture were decomposed. It shows that combination of supercritical extraction with an advanced oxidation process can significantly enhance the efficiency of the remediation process. The great advantage of this hybrid process is being eco-friendly due to using water as the solvent in the extraction process.


Akizuki, M., Fujii, T., Hayashi, R., & Oshima, Y. (2014). Effects of water on reactions for waste treatment, organic synthesis, and bio-refinery in sub-and supercritical water. Journal of bioscience and bioengineering, 117(1), 10-18.
Al-Marzouqi, A. H., Zekri, A. Y., Jobe, B., & Dowaidar, A. (2007). Supercritical fluid extraction for the determination of optimum oil recovery conditions. Journal of Petroleum Science and Engineering, 55(1-2), 37-47.
Alonso, E., Cantero, F., Garcıa, J., & Cocero, M. (2002). Scale-up for a process of supercritical extraction with adsorption of solute onto active carbon. Application to soil remediation. The Journal of Supercritical Fluids, 24(2), 123-135.
Anitescu, G., & Tavlarides, L. (2006). Supercritical extraction of contaminants from soils and sediments. The Journal of Supercritical Fluids, 38(2), 167-180.
Ball, A. S., Stewart, R. J., & Schliephake, K. (2012). A review of the current options for the treatment and safe disposal of drill cuttings. Waste Management & Research, 30(5), 457-473.
Chang, M. S., Shen, J. Y., Yang, S.-H., & Wu, G. J. (2011). Subcritical water extraction for the remediation of phthalate ester-contaminated soil. Journal of hazardous materials, 192(3), 1203-1209.
Chen, Z., Chen, Z., Yin, F., Wang, G., Chen, H., He, C., & Xu, Y. (2017). Supercritical water oxidation of oil-based drill cuttings. Journal of Hazardous Materials, 332, 205-213.
Chen, Z., Li, D., Tong, K., Chen, Z., Chen, H., Chen, Q., & Xu, Y. (2019). Static decontamination of oil-based drill cuttings with pressurized hot water using response surface methodology. Environmental Science and Pollution Research, 1-12.
Chen, Z., Zhou, J., Chen, Z., Chen, H., Chen, Q., He, C., . . . Yuanjian, X. (2018). A laboratory evaluation of superheated steam extraction process for decontamination of oil-based drill cuttings. Journal of environmental chemical engineering, 6(5), 6691-6699.
Committee, A. S. S. (2011). Drilling fluids processing handbook: Elsevier.
Croiset, E., Rice, S. F., & Hanush, R. G. (1997). Hydrogen peroxide decomposition in supercritical water. Aiche journal, 43(9), 2343-2352.
Dadkhah, A. A., & Akgerman, A. (2002). Hot water extraction with in situ wet oxidation: PAHs removal from soil. Journal of Hazardous Materials, 93(3), 307-320.
Dadkhah, A. A., & Akgerman, A. (2006). Hot water extraction with in situ wet oxidation: Kinetics of PAHs removal from soil. Journal of Hazardous Materials, 137(1), 518-526.
Eldridge, R. B. (1996). Oil contaminant removal from drill cuttings by supercritical extraction. Industrial & Engineering Chemistry Research, 35(6), 1901-1905.
Esmaeilzadeh, F., Goodarznia, I., & Daneshi, R. (2008). Solubility Calculation of Oil‐Conta‐minated Drill Cuttings in Supercritical Carbon Dioxide Using Statistical Associating Fluid Theory (PC‐SAFT). Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 31(1), 66-70.
Gan, S., Lau, E., & Ng, H. (2009). Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Journal of Hazardous Materials, 172(2-3), 532-549.
Geranmayeh, A., Mowla, A., Rajaei, H., Esmaeilzadeh, F., & Kaljahi, J. F. (2012). Extraction of hydrocarbons from the contaminated soil of Pazanan II production unit by supercritical carbon dioxide. The Journal of Supercritical Fluids, 72, 298-304.
Goodarznia, I., & Esmaeilzadeh, F. (2006). Treatment of oil-contaminated drill cuttings of South Pars gas field in Iran using supercritical carbon dioxide. Iranian Journal of Science and Technology, Transaction B: Engineering, 30, 607-611.
Gopalan, S., & Savage, P. E. (1994). Reaction mechanism for phenol oxidation in supercritical water. The Journal of Physical Chemistry, 98(48), 12646-12652.
Gulyas, H., Von Bismarck, R., & Hemmerling, L. (1995). Treatment of industrial wastewaters with ozone/hydrogen peroxide. Water Science and Technology, 32(7), 127-134.
Harry, F. (1985). Molten salt: Innovative thermal hazardous waste treatment processes. PB Rep., 81.
Hartonen, K., Inkala, K., Kangas, M., & Riekkola, M.-L. (1997). Extraction of polychlorinated biphenyls with water under subcritical conditions. Journal of Chromatography A, 785(1-2), 219-226.
Hatakeda, K., Ikushima, Y., Ito, S., Saito, N., & Sato, O. (1995). Treatment of chlorinated aromatic compounds using supercritical water. Paper presented at the Proceedings of the International Chemical Congress of Paci, c Societies and Physical Chemistry.
Hatakeda, K., Ikushima, Y., Sato, O., Aizawa, T., & Saito, N. (1999). Supercritical water oxidation of polychlorinated biphenyls using hydrogen peroxide. Chemical Engineering Science, 54(15-16), 3079-3084.
Hawthorne, S. B., Grabanski, C. B., Martin, E., & Miller, D. J. (2000). Comparisons of Soxhlet extraction, pressurized liquid extraction, supercritical fluid extraction and subcritical water extraction for environmental solids: recovery, selectivity and effects on sample matrix. Journal of Chromatography A, 892(1-2), 421-433.
He, C., Du, H., Tan, C., Chen, Z., Chen, Z., Yin, F., et al. (2018). Semi-continuous pressurized hot water extraction of black tea. Journal of Food Engineering, 227, 30-41.
Hoadley, A., Qi, Y., Nguyen, T., Hapgood, K., Desai, D., & Pinches, D. (2015). A field study of lignite as a drying aid in the superheated steam drying of anaerobically digested sludge. Water research, 82, 58-65.
Hollis, J. R. (1983). Plasma temperature incineration. Environ. Prog.;(United States), 2(1).
Islam, M. N., Jo, Y.-T., Jung, S.-K., & Park, J.-H. (2013). Evaluation of subcritical water extraction process for remediation of pesticide-contaminated soil. Water, Air, & Soil Pollution, 224(8), 1652.
Islam, M. N., Jo, Y.-T., & Park, J.-H. (2012). Remediation of PAHs contaminated soil by extraction using subcritical water. Journal of Industrial and Engineering Chemistry, 18(5), 1689-1693.
Islam, M. N., Jo, Y.-T., & Park, J.-H. (2014). Subcritical water remediation of petroleum and aromatic hydrocarbon-contaminated soil: a semi-pilot scale study. Water, Air, & Soil Pollution, 225(7), 2037.
Islam, M. N., Jung, S.-K., Jung, H.-Y., & Park, J.-H. (2017). The feasibility of recovering oil from contaminated soil at petroleum oil spill site using a subcritical water extraction technology. Process Safety and Environmental Protection, 111, 52-59.
Islam, M. N., Park, H.-S., & Park, J.-H. (2015). Extraction of diesel from contaminated soil using subcritical water. Environmental earth sciences, 74(4), 3059-3066.
Islam, M. N., Shin, M.-S., Jo, Y.-T., & Park, J.-H. (2015). TNT and RDX degradation and extraction from contaminated soil using subcritical water. Chemosphere, 119, 1148-1152.
Kamali, H., & Ghaziaskar, H. (2010). Pressurized hot water extraction of benzoic acid and phthalic anhydride from petrochemical wastes using a modified supercritical fluid extractor and a central composite design for optimization. The Journal of Supercritical Fluids, 54(1), 16-21.
Khanjari, Y., Eikani, M. H., & Rowshanzamir, S. (2016). Remediation of polycyclic aromatic hydrocarbons from soil using superheated water extraction. The Journal of Supercritical Fluids, 111, 129-134.
Khanpour, R., Sheikhi-Kouhsar, M. R., Esmaeilzadeh, F., & Mowla, D. (2014). Removal of contaminants from polluted drilling mud using supercritical carbon dioxide extraction. The Journal of Supercritical Fluids, 88, 1-7.
Kiran, E., Debenedetti, P. G., & Peters, C. J. (2012). Supercritical fluids: fundamentals and applications (Vol. 366): Springer Science & Business Media.
Kocher, B. S., Azzam, F. O., & Lee, S. (1995). Single-stage remediation of contaminated soil-sludge. Energy sources, 17(5), 553-563.
Kogbara, R. B., Ayotamuno, J. M., Onuomah, I., Ehio, V., & Damka, T. D. (2016). Stabilisation/solidification and bioaugmentation treatment of petroleum drill cuttings. Applied geochemistry, 71, 1-8.
Lagadec, A. J., Miller, D. J., Lilke, A. V., & Hawthorne, S. B. (2000). Pilot-scale subcritical water remediation of polycyclic aromatic hydrocarbon-and pesticide-contaminated soil. Environmental science & technology, 34(8), 1542-1548.
Laitinen, A., Michaux, A., & Aaltonen, O. (1994). Soil cleaning by carbon dioxide extraction: a review. Environmental technology, 15(8), 715-727.
Lauch, R. (1989). Evaluation of treatment technologies for contaminated soil and debris.
Lee, D.-S., Gloyna, E. F., & Li, L. (1990). Efficiency of H2O2 and O2 in supercritical water oxidation of 2, 4-dichlorophenol and acetic acid. The Journal of Supercritical Fluids, 3(4), 249-255.
Liu, J., Zang, L., Xu, Q., Wang, R., & Li, Z. (2017). Drying of soy sauce residue in superheated steam at atmospheric pressure. Drying Technology, 35(13), 1655-1662.
Low, G. K., & Duffy, G. J. (1995). Supercritical fluid extraction of petroleum hydrocarbons from contaminated soils. TrAC Trends in Analytical Chemistry, 14(5), 218-225.
Ma, B., Wang, R., Ni, H., & Wang, K. (2019). Experimental study on harmless disposal of waste oil based mud using supercritical carbon dioxide extraction. Fuel, 252, 722-729.
Ma, J., Yang, Y., Dai, X., Chen, Y., Deng, H., Zhou, H., . . . Yan, G. (2016). Effects of adding bulking agent, inorganic nutrient and microbial inocula on biopile treatment for oil-field drilling waste. Chemosphere, 150, 17-23.
Machida, H., Takesue, M., & Smith Jr, R. L. (2011). Green chemical processes with supercritical fluids: properties, materials, separations and energy. The Journal of Supercritical Fluids, 60, 2-15.
Manahan, S. E. (2006). Environmental science and technology: a sustainable approach to green science and technology: CRC Press.
Marcus, Y. (2019). Some Advances in Supercritical Fluid Extraction for Fuels, Bio-Materials and Purification. Processes, 7(3), 156.
Marr, R., & Gamse, T. (2000). Use of supercritical fluids for different processes including new developments—a review. Chemical Engineering and Processing: Process Intensification, 39(1), 19-28.
Morselli, L., Setti, L., Iannuccilli, A., Maly, S., Dinelli, G., & Quattroni, G. (1999). Supercritical fluid extraction for the determination of petroleum hydrocarbons in soil. Journal of Chromatography A, 845(1-2), 357-363.
Mujumdar, A. S. (2014). Handbook of industrial drying: CRC press.
Okparanma, R., Araka, P., Ayotamuno, J., & Mouazen, A. (2018). Towards enhancing sustainable reuse of pre-treated drill cuttings for construction purposes by near-infrared analysis: A review. Journal of Civil Engineering and Construction Technology, 9(3), 19-39.
Pereira, M. S., de Ávila Panisset, C. M., Martins, A. L., de Sá, C. H. M., de Souza Barrozo, M. A., & Ataíde, C. H. (2014). Microwave treatment of drilled cuttings contaminated by synthetic drilling fluid. Separation and purification technology, 124, 68-73.
Pignatello, J. J., & Chapa, G. (1994). Degradation of PCBs by ferric ion, hydrogen peroxide and UV light. Environmental Toxicology and Chemistry: An International Journal, 13(3), 423-427.
Robinson, J., Kingman, S., Snape, C., Barranco, R., Shang, H., Bradley, M., & Bradshaw, S. (2009). Remediation of oil-contaminated drill cuttings using continuous microwave heating. Chemical Engineering Journal, 152(2-3), 458-463.
Rofer, C. K., & Streit, G. E. (1989). Oxidation of hydrocarbons and oxygenates in supercritical water: Los Alamos National Lab., NM (USA).
Rouatbi, M., Duquenoy, A., & Giampaoli, P. (2007). Extraction of the essential oil of thyme and black pepper by superheated steam. Journal of Food Engineering, 78(2), 708-714.
Sahena, F., Zaidul, I., Jinap, S., Karim, A., Abbas, K., Norulaini, N., & Omar, A. (2009). Application of supercritical CO2 in lipid extraction–A review. Journal of Food Engineering, 95(2), 240-253.
Saldana, M., Nagpal, V., & Guigard, S. (2005). Remediation of contaminated soils using supercritical fluid extraction: A review (1994-2004). Environmental technology, 26(9), 1013-1032.
Sánchez‐Camargo, A. d. P., Parada‐Alonso, F., Ibáñez, E., & Cifuentes, A. (2019). Recent applications of on‐line supercritical fluid extraction coupled to advanced analytical techniques for compounds extraction and identification. Journal of separation science, 42(1), 243-257.
Schlegel, R. (1988). Rotary incineration for low emissions. Mod. Power. Systems, 8, 23.
Shang, H., Snape, C., Kingman, S., & Robinson, J. (2006). Microwave treatment of oil-contaminated North Sea drill cuttings in a high power multimode cavity. Separation and purification technology, 49(1), 84-90.
Street, C., & Guigard, S. (2009). Treatment of oil-based drilling waste using supercritical carbon dioxide. Journal of Canadian Petroleum Technology, 48(06), 26-29.
Tahmasebi, A., Yu, J., Han, Y., Yin, F., Bhattacharya, S., & Stokie, D. (2012). Study of chemical structure changes of Chinese lignite upon drying in superheated steam, microwave, and hot air. Energy & Fuels, 26(6), 3651-3660.
Teo, C. C., Tan, S. N., Yong, J. W. H., Hew, C. S., & Ong, E. S. (2010). Pressurized hot water extraction (PHWE). Journal of Chromatography A, 1217(16), 2484-2494.
Thammanayakatip, C., Oshima, Y., & Koda, S. (1998). Inhibition effect in supercritical water oxidation of hydroquinone. Industrial & engineering chemistry research, 37(5), 2061-2063.
Thomason, T. B., & MODELL, M. (1984). Supercritical water destruction of aqueous wastes. Hazardous Waste, 1(4), 453-467.
Tomasko, D. L., Macnaughton, S. J., Foster, N. R., & Eckert, C. A. (1995). Removal of pollutants from solid matrices using supercritical fluids. Separation science and technology, 30(7-9), 1901-1915.
van Bavel, B., Rappe, C., Hartonen, K., & Riekkola, M.-L. (1999). Pressurised hot water/steam extraction of polychlorinated dibenzofurans and naphthalenes from industrial soil. Analyst, 124(9), 1351-1354.
Westbrook, C. K., & Dryer, F. L. (1984). Chemical kinetic modeling of hydrocarbon combustion. Progress in Energy and Combustion Science, 10(1), 1-57.
Yan, P., Lu, M., Guan, Y., Zhang, W., & Zhang, Z. (2011). Remediation of oil-based drill cuttings through a biosurfactant-based washing followed by a biodegradation treatment. Bioresource technology, 102(22), 10252-10259.
Yang, Y., Belghazi, M., Lagadec, A., Miller, D. J., & Hawthorne, S. B. (1998). Elution of organic solutes from different polarity sorbents using subcritical water. Journal of Chromatography A, 810(1-2), 149-159.
Yang, Y., Hawthorne, S. B., & Miller, D. J. (1997). Class-selective extraction of polar, moderately polar, and nonpolar organics from hydrocarbon wastes using subcritical water. Environmental science & technology, 31(2), 430-437.
Zhang, Y., He, J., Li, F., Fan, X., & Li, X. (2019). Characteristics of Fracture Propagation Induced by Supercritical CO2 in Inter-Salt-Shale Reservoir. Geofluids, 2019.